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INTRODUCT ION

The successful development of an autonomous vision system for mobile

vehicles would be of considerable value and importance to defense and related

fields. Numerous reports and studies currently recommend artificial

intelligence/robotics applications which require autonomous vehicles.

Essential to these robotic vehicles is an adequate and efficient computer

vision system. A potentially more successful approach, other than TV pictures

and photographs, would be to develop a three-dimensional system employing a

laser rangefinder.

JS A range matrix describing a certain scanned area of the terraini in front

of the mobile robot can be used to estimate the slopes of the terrain. The

in-path and cross-path slopes of the terrain are evaluated by a slope

estimation scheme. These slope informations along the passible corridors are

utilized to determine a safer and more accurate path for the mobile robot

vehicle to travel.

The mobile robot vehicle is equipped with data acquisition and decision

making devices for its autonomous navigation over rough terrain. A laser

rangefinder can be operated by emitting laser pulses and measuring the time of

flight of a pulse between the instant it is transmitted and the instant the

reflected pulse is received. This time of flight is related to the distance

between the transmitter and the point on the terrain from which the pulse is

reflected. The terrain is scanned by changing the azimuth and elevation

* angles of the laser beam in a discrete fashion. The measurements are then

available in the form of an NXN 'range-matrix'.

References are listed at the end of this report.
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The slope estimation problem dealt with here is one of obtaining smoothed

estimates of function values and particularly their derivatives from a finite

set of inaccurate measurements in two dimensions. In one approach we can

identify the dynamic equations of the underlying system, or estimate the

distributions for the quantities of interest and then apply optimal estimation

algorithms. In some engineering problems the stochastic system may not be

identified easily and in these situations, spline smoothing has proved to be a

useful alternative.

In this report, we obtain the smoothed estimates of the slopes by

utilizing a two-dimensional smoothing algorithm. For the problem of smoothing

a finite set of noise corrupted data of an unknown function, it is proposed to

obtain the smoothed estimate by fitting a two-dimensional approximating

function to the data set, for a set of measurements corrupted by a white noise

process.

HSTORICAL REVIE~W

By noting the fact that original signals such as visual scenes are in

analog form, techniques were developed which reconstruct analog signals from

discrete data by utilizing interpolation or approximating functions.

Frequency domain interpretation of the interpolation process was reported in

Reference 1. Also, B-spline interpolates (refs 2-4) were used (ref 5) in

restoring a continuous signal from a set of digitized data. For one-

dimensional noise corrupted data generated by unknown systems, Reinsch (ref 6)

utilized natural cubic splines (ref s 2-4) along with least squares constraints

to solve the problem of curve plotting. Hou and Andrews (ref 7) constructed

2
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continuous-discrete image and utilized spline basis functions along with the

least squares constraints for image restoration. Because of their non-

recursiveness, the aleorithms in References 6 and 7 are involved with complex

computations and cannot be implemented on-line. Recently, by using a

reproducing kernel Hilbert space approach, Weinert et al (refs 8,9), developed

a structural correspondence between spline interpolation and linear least

squares smoothing of a particular random process.

In recent years, two-dimensional recursive filters have drawn much

attention because of the need for processing images or other two-dimensional

information. Previous efforts (refs 10-12) to achieve a truly recursive

two-dimensional filter were of only limited success because of the difficulty

in establishing a suitable two-dimensional recursive model as well as the high

dimension of the resulting matrix and state vector. Recently, by using a two-

dimensional recursive model obtained from a two-dimensional spectral

factorization technique (ref 13), Woods and Radewan (ref 14) developed a two-

dimensional Kalman vector processor and a two-dimensional Kalman scalar

processor.

The above mentioned time-domain design techniques assumed or identified a

two-dimensional stationary discrete system model at the beginning of their

problem formulation. On the other hand, Reinsch (ref 6) interpreted a one-

dimensional data smoothing problem as an optimal curve-fitting problem arising

in approximation theory, and proposed a nonrecursive smoothing algorithm using

smoothing splines. For a two-dimensional image restoration problem, Hou and

Andrews (ref 7) followed the approach taken by Reinsch (ref 6), and extended

it to a two-dimensional problem in a nonrecursive manner. In this report, we

3



develop a two-dimensional recursive smoothing algorithm. Compared to its

nonrecursive counterpart, this recursive algorithm will require less

computational complexity and memory space. Especially, the amount of

computation needed at each iteration is independent of the size of the

two-dimensional data.

PROBLEM FORMULATION FOR ONE-DIMENSIONAL APPROXIMATION

From the viewpoint of approximation theory, when a set of discrete

observation data is noise free, spline interpolation provides a means of

optimally reconstructing an unknown original signal. When the observation

data are corrupted by noises, and if the form of the original continuous

signal is known, then we can use least squares estimation techniques to

approximate the original signal. We are now dealing with a problem in which

an unknown signal is approximated by smoothing splines from a set of noise

corrupted observation data. Specifically, an unknown signal f(Q) is

approximated by a polynomial spline s(E) which minimizes the objective

function:
N N

J* [[s(n) - mn]TR-l[sC( ) - ] I  Pn f~ [ sk(&)j 2d }  (1)
n- n-2 &a-1

where

mn is observation data;

mn n f(-n) + vn, for n - 1, 2,...,N;

vn is a white observation noise process with error covariance Rn;

Rn - E{vn vnT};

0n > 0 is a smoothing parameter; and

sk is the kth derivative of s(E).

4



At this point, it is worthwhile to note the physical role of the smoothing

parameter Pn as follows: (1) when Pn becomes very small, pn + 0+, the

resultant approximating function will pass through each data point and become

an interpolation function; (2) when Pn assumes a very large value, Pn + ,

minimization of the objective function in Eq. (1) corresponds to fitting a

straight line to a data set using least squares criterion. Thus, it can be

said that the smoothing parameter controls resolution in a tradeoff of the

smoothness of the restored function.

Choice of Approximating Function

As has been noted, it is desired to develop a recursive algorithm whose

results are sufficiently close to those obtained by directly minimizing the

global problem as given by the criterion in Eq. (1). Fundamental problems

encountered in developing a recursive algorithm which generates approximating

functions are:

1. feasibility of recursive structures,

2. feasibility of numerical calculations.

Regarding the first problem, it has been noted from References I through 5

that some of the approximating functions such as polynomial splines and

piecewise Hermite polynomials have finite support. That is, a resultant

approximating function for one section is mostly affected by its neighboring

data points. Thus, a recursive structure with one or more sample delays would

result in sufficiently close results to nonrecursive ones.

For the second point, out of a certain set of functionals, an optimal

solution to Eq. (1) is an L-spline (refs 2-4). L-spline is a piecewise

polynomial of degree 2k-1, and has 2k-2 continuous derivatives in the region

5



[ 1, N]" Here, we propose to restrict our approximating functions to

piecewise Hermite polynomials (ref 3) of degree 2k-1, which have k-I

continuous derivatives in the region [ i, N]" Advantages in using piecewise

Hermite polynomials are as follows. Define

AI
xi [s(E,), s'(),...,sk-l(Q)]Tj , i = 1,...,N

I =q i

Then a piecewise Hermite polynomial s(Q) is completely determined by xi, i =

1,2,...,N. For the purpose of clarity in discussion, only the case of k=2 is

treated in the following. A piecewise cubic Hermite polynomial is represented

as:
< <

Sl,2() for I = 2

s(M) - . . (2)
• < <
SN-_,N(Q) for N-l N

where

Sk-l,k ) " kk,OM 4k,o()][xkT, xk-iT]T (2a)

xk - [s(Ek) s'( k)]T, k " 1,...,N (2b)

= ( - k-l)2[ (k- k-l) + 2( k-)]/( k-7Ek_l) 3  (2c)

k'l (2d)
Ck,0 ) :(tk-E)2[( k-tkl) + 2( - k_l)]/(&k-F.~)3(e

+, k_) (2e)
and

4'k,0 ( ) - ( -Ek-l)(&k-E)2/( k- k-l) 2  (2f)

Smooth Integrals as Quadratics at Node Points

Thus, it becomes natural that the smoothing integral in Eq. (1) is

expressed in terms of xi's, i - 1,2,...,N. With some manipulations in

algebra, the smoothing integral for k - 2 in Eq. (1) is represented in a

quadratic form as derived in Appendix A.

6



f E l s"(E)11 2 dE - (xn - A*xn- )TB-l(xn-A*xn-l)

= I I . I I 1 I (3)
lxn I IC21 C22 1 lXn II_ _II_ _II_ _ I

where

A TI
Xn = [s(C), s'()]I (4)

- -I I-- , -- I
I1 A1 3 2 1

A*1 I B I A2 (5a)
0 11 -- ,

1 I 12 1

A = En- n-l, for n = 2,...,N (5b)

A - A A
Cll - A*TB-A* , C12 C2 1T A T B, 022 =B

-  (Sc)

A nonrecursive solution for the minimization of the objective function in

Eq. (1) can be obtained by taking the gradient of J* with respect to [Xl,

x2,...,XN]T and setting it to zero. However, this approach will require

solutions of a set of 2N simultaneous equations. To avoid this computational

problem, we have developed a recursive algorithm which requires inversion of 2

x 2 matrices only.

RECURSIVE ALGORITHM

Given a set of initial values for the mean xI and its error covariance

Pl, where P1 - E{(xl-xl)(xl-x1 )T}, by using Eqs. (3) and (4), the objective

function in Eq. (1) becomes

7
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discrete edges, a two-dimensional smoothing algorithm is utilized to estimate

the range slopes; (3) estimated range slopes are transformed into terrain

slopes.

Estimated Terrain In-Path Slope

The simulation of terrain with hills and valleys is given in Figure 2.

The estimated terrain in-path slopes (ref 18) are displayed in terms of a

slope map, Figure 2. Characters A,...,G represent a particular range of the

terrain in-path slopes increasing from A to G, at the corresponding location.

U represents undefined slopes. In Figure 3, we note circular slope regions on

the faces of sinusoidal hills and valleys. Also, along a radial direction,

the estimated slopes are changing slowly from one region of slopes to another.

The large empty spaces are due to the hidden regions at the back of boulders

or hills where laser rays could not reach. The undefined gradient represented

by 'U' occurs when the recursive algorithm cannot be applied due to sharp

changes in ranges between adjacent measurement data. The estimated in-path

terrain slope maps are used for the evaluation of the terrain in front of the

mobile robot vehicle.

Terrain Cross-Path Slopes

In discussing the terrain cross-path slopes (ref 19), the data can be

conveniently processed to generate smoothed in-path and cross-path range

slopes recursively in a spherical coordinate system due to the regularity of

the elevation and azimuth angles. When we proceed to calculate the true

terrain slopes on the base plane, the regularity of the data points is

compl~etely destroyed. For a fixed elevation angle 8, the horizontal

projection of the range data is not located at a fixed distance from the

21



measurement data in cylindrical coordinates. However, there is a major

difficulty in this approach. Even though the two independent variables i and

Gj for the rangefinder are changing with constant increments A and A6,

respectively, the independent variable Pi in a cylindrical coordinate changes

irregularly. The recursive smoothing algorithm in the previous subsection

requires that the data points be located at the corners of rectangular grids

of the two independent variables. Since the two independent variables Pi and

6in a cylindrical coordinate system do not form rectangular grids, the

smoothing algorithm cannot be applied directly. By noting that the

positioning angles i and 6j are changing in regular fashion, it is proposed

to obtain the smoothed estimates of the range slopes dr/da3 and dr/de defined

in spherical coordinates. Then, these estimates are transformed to the

terrain slopes. In applying the smoothing algorithm to terrain slope

estimation, one point to be mentioned is that the basic philosophy of the

smoothing spline approach is to suppress the noise elements by fitting a

smooth approximating function to a noise corrupted data set. Therefore, when

the function to be approximated has sharp changes in its values or

derivatives, the smoothing algorithm will produce errors in the results by

smoothing out these actual sharp changes. From the viewpoint of terrain slope

estimation, such changes occur at the edges of a boulder, a crater, or a ridge

on the terrain. Thus, it is proposed to detect these edges by using the rapid

estimation scheme. Then, for the area which is free of discrete edges, the

two-dimensional smoothing algorithm is utilized to estimate the slopes. The

terrain slopes are estimated in the order: (1) discrete edges are detected

by using the rapid estimation scheme; (2) for the area which is free of

20



in the fourth column, x*k,41k,4 and x*k,41k+l,4, and so on.

The approximation method described above is one of the simplest ones. We

can employ more elaborate approximation methods at the cost of more

complicated computations. By now, we have introduced a recursive quarter-

plane processor which computes the filtered estimate x*k,11k,X as an
*

approximation to xk,1Ik,X. From the definition of the estimate xk,xlp,q, the

value of xk,j which minimizes J is xk,I1N,M. Here, we note that X*k,.Ik,t has

its support in the region R(k,X), while the nonrecursive solution x*k,LIN,M

has its support in the region R(NM). Thus if we desire to have a better

approximation to xk ,IN,M , we need to develop a smoothing algorithm which

computes xk,llk+d,£+d where dl,d 2  1 i, k+dI f N and X+d2 - M.

The smoothed estimate xk,tlk+d1,i+d2 is defined as the estimate of xk,X

obtained by fitting an approximating function in the region R(k+dlt+d2).

The derivation procedure for the above approximation is similar to that of

filtering discussed previously, and is omitted for conciseness.

FURTHER NAVIGATION PROBLEMS

Terrain Slopes and Range Slopes

With reference to Figure 1, terrain in-path and cross-path slopes are

defined as the two orthogonal slopes dz/dp and dzfpde in a cylindrical

coordinate system. During the past investigations, the terrain slopes were

found to be appropriate measures for evaluating a terrain. A direct approach

for estimating the terrain slopes would be to fit a smoothing spline to the

19



By definition, the filtered estimate xk,21k,2 is the estimate of Xk,2

obtained from an approximating function which minimizes the objective function

in Eq. (27) for (p,q) - (k,2). For minimization, we take the gradient of

J(k,2) with respect to xi and 2, and set it to zero

V(1) J(k,2) = 0

where

j - [x1,jT, x2 ,jT,...,XkjT]T (28)

We can obtain a final recursive estimation equation as:

xk,llk,2 Px,l- 1 xk~l Xk-l,llk-1,2
k Ek,2 + Fk,2 k k(29)

xk,21k,2 ITRk,2- mk,2 Xk-l,llk-l,2

For notation used in the above equation, see Reference 17. With reference to

the final estimation equation above, it is noted that for the filtered

estimate xk,21k,2 the scheme uses the previous estimates xk,l, xkl,lik.l,2,

and xk-1,21k-1,2, and the measurement mk,2. Here, it should be emphasized

that the scheme uses the smoothed estimate xkl,llk1l,2 instead of Xk.l ,I .

Thus, when the filtered estimate xk,2Jk,2 is computed, we need to update the

estimate xk,l to xk,llk,2 for use in the next iteration. Now, by using the

recursive estimation equation in Eq. (28) and the pseudo error covariance
A

equation in Reference 17, we can compute xk,21k,2, k 2,...,N recursively.

The resultant recursive filtering equation for xk,31k,3 becomes similar

to the one in Eq. (28). Also, the smoothing equation for x*i,3/i+l,3 becomes

similar to the one for x*i,2/i+l,2. After all the estimates in the third

column, x~i,31k,3 and x*k,31k+1,3 for k -I, 2,...,N are obtained, the

smoothed estimates x*k,31k+1,3, k -,...,N-1, will be used for the estimates

18
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A QUARTER-PLANE PROCESSOR

The estimate xk,£1p,q is defined as the estimate of xk,X obtained by

fitting as approximating function in the region R(p,q) where

A < < < <
R(p,q) - {(E,n) l = = p , and nI = n - nq} (26)

For (p,q) - (k,£), xk,£1k,X becomes a filtered estimate. For p k and q X 2,

except for p = k and q = x, xk,£1p,q becomes a smoothed estimate of xk,. In

our formulation, xk,l1p,q would be obtained by minimizing the objective

function J(p,q) in the region R(p,q):

J(p,q) = 1 1 [(Hxi,j-mi,j)TRi1 (Hxi,j-mi,j)]
J- i= ij

q-1 p-I.
+ [~ I I (xi,3T ' xi+i,JT, xi,j+IT, xi+l,J+IT)

J-1 i-i

. C(xij T, Xi+l jT, xj,j+lT, Xi+l,j+lT)T] (27)

where H - (1,0,0,0).

In a quarter-plane processor, the filtered estimate Xk, lk,k is obtained

by using the previous estimates of xk-1,. , Xk-l,, and xk,.-1, and the

measurement mk,l. In the next iteration, the filtered estimate xk+l,.lk+I is

obtained by using the previous estimates of xk,X.1, xk,,, and xk+l,Zl and the

measurement mk+l,X. After estimating all the states in the 9th column the

recursive processor moves to the next column, and estimates xk,t+lIk,Z+l,

k - 2,...,N, and so on. First, we will discuss a filtering procedure for

Xk,21k,2, k - 2, 3,...,N. Then, this procedure is extended to the filtered

estimates xk,11k,X for X - 2, 3,...,M.

17
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so-called "saddle point" and every surface element of such a membrane is "pure

twist." An appropriate smoothness measure would be changed to:

a2  
a2

z( ,n) - [-- s( ,ri] 2 + 8--j s(,n)] 2  (23)

3. In Reference 7, Hou and Andrews suggested using IiV4s( ,n)1I 2 as a

smoothness measure for a surface. The physical interpretation of the quantity

V4 s(F,n) is found in a plate bending theory (ref 16); an unloaded plate can

bend only in a biharmonic function w where

V4W . 0 (24)

A bicubic Hermite polynomial which minimizes the objective function J is given

in Appendix B.

Smoothing Integral

Now, it is needed to determine the function s( ,n) which minimizes the

objective function J in Eq. (16). It is noted that the smoothing integral in

its present form gives difficulties in finding an explicit solution. By

evaluating the integrals of the derivatives of basis functions and applying

some algebraic manipulations, these smoothing integrals are converted to

quadratic forms as follows:

. n z(,rOd€N  -M-l N-ilj+ ~i+
P InE ff[(,n)]d~dn - M jl&[ [ [z (E, n)] d Wdo

1- n le J.1 - i .i - nj E

. M-1I N-1S[ yI (xi 1T, xi+ 1 T, xij+iT, x2+ij+IT).

, j-l i-l

C'(xi, T, xi+l,jT, xi,j+T xi,j+lT)T (25)

9 where C is a 16 by 16 matrix.

I
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for i = 1, 2, ...,N and J - 1, 2,...,M. Then, a piecewise bicubic Hermite

polynomial is completely defined by xij, i - 1, 2,...,N and j - 1, 2,...,M,

as follows: < <

ands(,) sij(&,n) , for i = i+l (18)

< <
j- - fj+l (19)

where T

1 i 1 n)
( = I •xi+L,j+m  (20)
1-0 M-0 ( ) ()

Choice of the Smoothness Measure z(Erir)

Here, we present three examples of the smoothness measures and compare

their physical implications.

1. Gaussian curvature: In Reference 15, the mean curvature of a

surface at (E,n) is defined as:

(0.5) V2s( E, n) (21)

Noting the Euler's theorem (ref 16) that the sum of two curvatures in

perpendicular directions at a point is constant, the square of V2s(&,n) in Eq.

(21) would be a reasonable measure for the smoothness of a surface:

D2 32

Z(E,)- [ s(E, n) + --- s(E,n)]2  (22)

2. A variation from the Gaussian curvature: With reference to Eq. (22),

an interesting case occurs when the two principal curvatures are equal and of

opposite sign. The mean curvature in this case is zero. This is the

15
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PROBLEM FORMULATION FOR TWO-DIMENSIONAL APPROXIMATION

When the observation data are noise corrupted and the underlying system

is unknown, it is proposed to approximate the original signal by spline

functions which minimize a certain objective function. Thus, from a set of

discrete measurements mi,j corrupted by white noise process vi,j

mij - f(Ci,rTj) + vij , i = 1, 2,...,N, j - 1, 2,...,N (15)

The original two-dimensional signal f( ,n) defined in the region of (&,ni) is

approximated by a spline function s(C,n) which minimizes the following

objective function:

N N
j= I I [s(einj) - mij]TRij-l[s( inj) - mij]

j=l i.l
+ Pf N l z( E, n)ddn] (16)

nl l

where p > 0 is the smoothing parameter; Ri j is the observation error

covariance; and z(&,n) is a certain smoothness measure of s(t,n) at (&,n).

Choice of an Approximating Function

In this report, we are interested in obtaining smoothed estimates of

function values and the first derivatives in both & and n directions. Here,

we propose to restrict our approximating functions to piecewise bicubic

Hermite polynomials which have continuous first derivatives in both C and n

directions.

Define

a2 sa

( ,n)JTI(g,n) - (iunj) (17)a~anI
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mi - f( i) + vi , i 1,...,l00 (12)

where vi is white Gaussian measurement noise,

Ri - E{viviT} - 0.000025, and A - - n-i - 2w/100 - 0.062832 (13)

Function values and the first derivatives at discrete nodes are estimated

from the measurements mi, i = 1,...,100 by the three schemes below:

1. Difference quotients method.

2. Recursive smoothing algorithm with X = 1: Eq. (10).

3. Nonrecursive smoothing by cubic splines as described in Reference 6.

Table I shows the mean-square errors from the three schemes above where

1 100
Co . [ (f( i) - Xii+l(1))2,

100 imfl

(14)
1 I00

£1. -.. (f'(El) - xili+1(2)) 2

O i-I

TABLE I. MEAN-SQUARE ERRORS

I I I I
I I Difference I Recursive Smoothing I Nonrecursive Smoothing I
I I Quotients I by using Eq. (10) I by Cubic Splines, Ref. 6 I
| t I
i Co I 2.5x10-5  I 0.8x10-5  I 0.57xlO- 5 ISI I I
e £l I 4-30x0 - 1 I 0.12xlO-1 0.1007x10-  I

From Table I, it is noted that both smoothing algorithms are successful

in reducing the error in the estimated states. The error in the first

derivative is decreased by more than 10 db. Moreover, Table I shows that the

performance of the two smoothing schemes are comparable. However, it should

be emphasized that the recursive algorithm developed in this report is much

simpler than the nonrecursive spline smoothing.

13



following. The smoothed estimate of xi obtained by fitting cubic splines to

mn, n - 2, 3,..., i+1 with the initial values x1 and E1 - P1 is the same as

the smoothed estimate of xi obtained by fitting splines to mn , n ,

with the filtered estimate xili and Ei.

A recursive procedure to obtain the smoothed estimate xili+1 is

summarized as follows:

Part 1. Obtain the filtered estimates xili, i - 2,...,N by using Eqs.

(7d), (9), and (9a).

Part 2. Obtain smoothed estimates xili+l, for i * I,...,N-l by using

Eqs. (10), (lOa), and (10b).

As was mentioned earlier in this section, the smoothed estimate xiii+y is

an approximation to the nonrecursive solution xj* = xiI N . Thus, as the number

of delays, £, increases, we will get a better approximation to xi*. For 9I

2, 3,..., only the smoothing part is modified by solving the simultaneous

equations in Eq. (7.) with k - i+X. In fact, the smoothing algorithm developed

by far is a fixed-lag smoothing algorithm, which is suitable for an on-line

implementation. If the situation does not require an on-line implementation,

we can also derive a fixed-interval smoothing algorithm with observation set

M - {ml,...,mN}. In this case, the resultant smoothed estimates become

exactly the same as the nonrecursive estimates.

SIMULATION RESULTS

For a continuous signal

f(&) sin(&)

Measurements are obtained at discrete points:

12
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With reference to Eqs. (7) and (8), each iteration of the recursive

filtering algorithm can be interpreted as fitting a cubic polynomial to the

previous estimate xi-llil and the present measurement mi in the region

Smoothing
A

A smoothed estimate xili+ is defined as the estimate of xi obtained by

solving the minimization problem in Eq. (6) with N - i+£. In fact, this can

be interpreted as fitting a polynomial spline to the first i+1 data and

obtaining the function value and its derivative from the approximating

function at the node i. In our formulation, this corresponds to solving the

simultaneous equations of the same form as Eq. (7) with j - 1, k - i+X, and

with the quantities Gj and dl defined in Eqs. (7a) and (7b). By using the

same reduction method as before, the result would be the same form as itself

(Eq. (7) with j - 1 and k - i+£).

For the case of a one-sample delay, xili+l is obtained by solving the

simultaneous equations in Eq. (7) with j 1 1, k - i+l, which, in turn, yields

xili+l = ViEi-1xii + Kimi+ I  (10)

where

Vi - [-PiC1 2(PiC 2 2 + HTRi+l-lH)PiC21 + Gi]-1 (lOa)

Ki - -ViPiCl 2 (PiC 2 2 + HTRi+ - 'H)-HTRi+I -  i+l (lOb)

and Ei is defined as before.

Equation (10) is the desired smoothing algorithm, in which the smoothed

estimate xili+l is obtained by updating the filtered estimate xili with the

measurement mi+l. The smoothing procedure described above implies the

ik - .*' -



for xi. Thus, by eliminating the first four equations, i.e., the variable xj,

Eq. (7) is reduced to the same form as itself with j - 2, k - i, and x2 12 and

are calculated by Eqs. (7c) and (7d). Note that the quantity Ej defined by

Eq. (7d) is called pseudo error covariance, because Pkik - E{xk-xkgk)(xk'Xk~k)T }

cannot be computed in a recursive manner directly.

By applying this reduction method repeatedly, the original equations in

Eq. (7) are reduced to the same form as themselves with j - i-1, k - 1 and

every xjlj and Ej is computed by Eqs. (7c) and (7d) recursively. Solving Eq.

(7) with j - i=l, k = i in terms of xi, we obtain a recursive estimate

algorithm as

xili - Ei[HTRi-lmi - Pi-IC21Gi-l- 'di-l] (8)

Equation (8) is rearranged as

xili - EiHTRi-1mi + Fixi-1i-1 (9)

where

Fi -_Pi-iEiC21( Pi-iCll+Ei- I)- iEil- I (9a)

and Ei's are computed by Eq. (7d) recursively. Equation (9) above is the

desired filtering equation which computes xiii from the previous estimate

xi-lfi-l and the present measurement mi. From the viewpoint of smoothing

splines, the recursive filtering algorithm can be interpreted as follows. The

estimate of xi obtained by fitting cubic splines to the measurement data mn,

n - 2, 3,..., with the initial values xj and El - P1 is the same as the

estimate of xi obtained by fitting a cubic polynomial to the measurement mi

with the initial values at stage i-1, xilli-l, and Eil1. In fact, the above

interpretation comes from the mathematical derivations in Eq. (7) through Eq.

(9).

10



Gj I PJCl2 1
0 I

------ --------- xj dj
I pjC22 I I ---
I

lPjC 2 1l+ Pj+IClJ Pj+Cl2

1I+ HTR-1 I HTR- mj+ I
S I il . xj+l I+l

I- •-- --- ------II I • I II II

I + Pj+lC2l P1- 2C1 2  I . •

I I--. •• I •1. 1•

I ~------------------11 1
IPk 2 C2 2  • .

Pk2C21 1+ Pk.lCll IPk-lC12
III IXk.lI IHTRl'Mk-~l

+ HTR- I k-il

k-i I ----------

--------- I --------I
I Pk-lC22 I I I I

0 Pk-iC21 + II
- I+HTR- l 1

II k RTR- k

l I-~---- ----------

(7)

where j = land k i, and Gj and dj are defined by
A

Gj A pjCll + Ej - 1 (7a)

djA (7bdi != EJ- I xili (7b)

xiii - Ej(HTRj-lmj + Pj-lC 21Gj-I-ldj-1], xll n xl (7c)
A

Ej - 1 - PjC22 + 1ITRj-H - (Pj-iC21)Gj-l-1(pj.C12), El - PI (7d)

It should be noted that the matrix on the left side of Eq. (7) is diagonally

dominant and positive definite. Here, we are interested in solving Eq. (7)

J. 9



N
JN [(Hxn-mn)TRn - l(Hxn-mn)] + (Xl-Xl)Tpl - l(l-xl)

n-2
N

+ X Pn(xn-A*xn- )TB - l(xn-A*xn_1) (6)

n 2

*where H (1 0).

Let the solutions to the above optimization problem be [xl*,x2*,...,XN*].

If Xplq is defined as the estimate of x p obtained by minimizing Eq. (6) with N

q, then xi* can be written as xiIN . Here, it is proposed to approximate a

nonrecursive solution xi* - xiIN by xili+l, where X - 0 and Z = N. As has

been mentioned before, due to a local base property of the polynomial splines,

*the smoothed estimate xili+X would be sufficiently close to the nonrecursive

solution xi* for t- 1, 2, or 3.

Filtering

From the definition, a filtered estimate xili would be obtained by

minimizing the objective function in Eq. (6) with N - i. By taking the

gradient of Ji with respect to [xl, x2,...,xi], we have a set of simultaneous

equations as follows:

8



rover. It is desired to calculate the cross-path slope at point (0i,6j)*

However, in general, Pi,j * Pi,j+l. Thus, the true cross-path slope is not

along an arc connecting points Pi,j and ijl

Our algorithm to calculate the terrain cross-path slope can then be

summarized as follows:

1. Obtain the range measurements.

2. Use the smoothing algorithm to calculate the range cross-path slope.

3. Obtain the terrain cross-path slope and its variance.

Evaluation of Terrain Variables-

As mentioned in the introduction, in the evaluation of terrain variables,

we only use the slopes at the spine and track points. The reason is twofold.

First, only a minor part of this path selection scheme needs the data of

elevation. Second, if we adopt the elevation estimates as our input data, we

will get larger errors in the calculation of in-path and tilt slope terrain

variables.

The terrain variables and the variances together with the corresponding

explanations are listed below (ref 20).

* 1. In-Path Terrain Variables. The in-path slope terrain variable gives

the average of the in-path slopes for the four vehicle wheels at each section.

This variable is a measure of the risk in the forward direction.

2. Tilt Slope. Tilt slope terrain variable is used to estimate

excessive cross-path slopes which may cause the vehicle to tip over.

3. Obstruction Height. The obstruction height is calculated for six

different locations at each discrete section of the terrain. The maximum

value is then chosen as representative of this whole section.

22



En deriving the formula for a typical obstruction height, we use a third

order polynomial to approximate the terrain elevation in each location. By

differentiating this polynomial with respect to the distance, we get an

expression for the slope. With the known data of slopes at the three points

substituted into this expression, we can determine the coefficients of the

polynomial. Using this polynomial, we can then find the obstruction height in

this direction.

4. Wheel Deviation. The wheel deviation variable describes the offset

of any of the four wheels from a plane. Wheels on any three track points

define a plane. For each combination of three wheels touching the terrain,

the deviation of the fourth wheel with respect to this plane is defined as the

w~heel deviation.

A set of the measurement data is obtained by the described scanning

scheme. The range measurement data are processed by the gradient estimation

scheme to evaluate In-path anl cross-path slopes at the data points. Since

the slopes are estimated in the spherical coordinate system, it is necessary

to transform the range slope in the spherical coordinate system to terrain

slope in the cylindrical coordinate system. The in-p.Lth and cross-path slopes

and their covariances at the spline and track points along the corridors are

evaluated by applying a two-dimensional interpolation scheme over the

estimated slopes at the data points. The terrain variables at a discrete

section along each corridor are computed by using estimated slopes at the

spline and track points. Since the terrain variable estimates have

uncertainty, the present method increases the reliability by considering

* standard deviation as well as mean values.
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CONCLUSION

By taking an algebraic approach, a recursive smoothing algorithm was

developed as an approximation to nonrecursive spline smoothing. Compared to

the recursive smoothing algorithm suggested by Weinert, the smoothing

algorithm in this report is simpler in that the scheme is in a discrete form.

SSimulation result shows that the performance of the recursive smoothing

algorithm is comparable to that of its nonrecursive counterpart. In addition,

the computational complexity with recursive smoothing algorithm is much less

than its nonrecursive one. Also, recursive smoothing by splines can be

implemented on-line. By taking an algebraic approach, a two-dimensional

recursive smoothing algorithm was developed as an approximation to a

nonrecursive smoothing spline technique. While the amount of computation

required for a nonrecursive algorithm increases rapidly with the size of the

two-dimensional data, the amount of computation for this smoothing algorithm

increases only linearly.
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APPENDIX A

EVALUATION OF SMOOTHING INTEGRALS

From Eqs. (2a) through (2e) of the text, a piecewise cubic Ilerinite

polynomial in the section [E-,l is represented as:

1-, 1i i( E) T I s(Ei)

0i, 0() 0 s(Ei-i)

where s(&i-l), s'(Ei-l), s(Ei), and s'(FEi) are the function values and first

derivatives at the nodes i-i, and i. We make the change of variables such as

U' - E- Ei-1 (A-2)

This change of variables does not affect the value of the smoothing integral

and results in a simpler computation. The smoothing integral in the interval

(Ei-i'Ei] is

Iilj- f- 1,IP (12 dE f I~iij(1I 2dUj (A-3)

E~i-l0+

where

t Ii - "ii-l - Ei Ei-l

Using Eq. (A-2) and Eq. (2a) of the text, Eq. (A-i) becomes

stli~)- [01'1001)'101() 0i'o01) i'o(1[xi xi...iTjT (A-4)

Thus, the norm square of the second derivative is written as:
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I Is"i..1,i(u)l 2 _ [xiT xi-r .TT

V'i,0(U)0"i,l(u), 0"iO(1)'"i,l(u), *"iO(1)j'i,O(u), O"i,'0)V"'iO(v) I

I- -I I- -IT -- - -

Ixj I-Ix i  I I I lxi I
SII I I ki-.,j(i) I • I I (A-5)
I xi.l I I xi- 1 I I I I x -. I
I _ I _ _ _ I - 1 I

By utilizing Eq. (A-5), Eq. (A-3) becomes:

I- I I -I - -I
2 I xi I I f Ki-l,i(u)dv I I xj I

= IIs"i-ii(U)I 2 di = I I I 0+ I 1 1
SIx- I I I I xi-II___ _ 1 I_.. _ I _ 1__

(A-6)

Thus, smoothing integral is obtained as:

I- TT - - I- -F
I xi I 12A 3  -6A- 2 -12A- 3 -6&-2 I x, I

I I .1 I (A-7)
xi- I -6A- 2  4A- 1  6A- 2  2A-1 ) x 1  II .. .II I I _ _ I

- -12A- 3 6A72  12A-3  6A 2  -

-6A72  2A71  6A-2  4A-I

By defining B-1 and A* as below:

I- -I I- -I
I 12A-3  -6A2 I I1 A

- I A* I I (A-8)
I -6A- 2  4-1 I 0 1 I
I_ _I I _ 13
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Equation (A-7) is rewritten in the following form as:

I- -IT I- -I
I Xij I I B B-'A* I I xi I

iili-I I -I II I (A-9

I xi... I I A*TB 1A* -A*TB-1 I I xi-1 I
- I I - I I - I I (A-10)
I Xj I I -Bl'A* B-1  I I xi I
I- ± I L 1

- (xi - A*xi-..)TBl(xj-A*xji) (A-li)

which is Eq. (3) in the text.
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APPENDIX B

In this Appendix, we show that a piecewise bicubic Hermite polynomial

which minimizes the objective function in Eq. (B-i) becomes a bicubic spline.

J JE + PJs (B-1)

where

M N
JE= I [s(Ei,Tj) - mi,jITRij-l[s(ci, j) - mi,j] (B-2)

j=l i=l
and

rim N 34
i 5=1 f f -- s( , n)) 2 d~dn (B-3)

Let a set S be a collection of all piecewise bicubic Hermite polynomials.

Also, we define a set U as a collection of all piecewise bicubic Hermite

polynomials which satisfies constraints set D in Eq. (B-4).

s( i'nj) - c(ij) , i = 1,2,...,N and j = 1,2,...,M

as( i,nj)/a = c (i,j) , j = 1,2,...,M and i - 1,N

as(Ei'nj)/a = c (i,j) , i - 1,2,...,N and j = 1,M

c2s(E,',j)/a3 _ cEn(i,J) , i = 1,N and j = l,M (B-4)

Then the minimizing problem in Eq. (A-1) is rewritten as:

Min J Min PE + Pis] - Min JE + p ln Js] (B-5)
s(En)CS s(&,n)cS D s(&, n)c U

In the paper by DeBoor (ref B-i), it is noted that there exists a unique

bicubic spline g( ,n) in the set U. Also, by using a standard technique to

derive the minimum norm property (ref B-2) of a bicubic spline, it can be

shown that:

TIMf N 34g( E, n
is f ") 2 d d n (B-6)
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Since the bicubic spline g( ,n) is unique, we have the following Lemma:

Lemma 1: A bicubic Hermite polynomial s( ,n)eU which minimizes the

smoothing integral Js, becomes a bicubic spline g( ,n).

With reference to Eq. (B-5) and Lemma 1, we conclude that a piecewise bicubic

Hermite polynomial s( ,n), which minimizes Eq. (B-5), becomes a cubic spline.
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WATERVLIET, NY 12189, OF ANY ADDRESS CHANGES.
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TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST (CONT'D)

NO. OF NO. OF

COPIES COPIES

COMMANDER DIRECTOR

US ARMY MATERIALS & MECHANICS US NAVAL RESEARCH LAB

RESEARCH CENTER 2 ATTN: DIR, MECH DIV 1
ATTN: TECH LIB - DRXMR-PL CODE 26-27, (DOC LIB) 1

WATERTOWN, MA 01272 WASHINGTON, D.C. 20375

COMMANDER COMMANDER
US ARMY RESEARCH OFFICE AIR FORCE ARMAMENT LABORATORY
ATTN: CHIEF,, IPO 1 ATTN: AFATL/DLJ I
P.O. BOX 12211 AFATL/DLJG 1
RESEARCH TRIANGLE PARK, NC 27709 EGLIN AFB, FL 32542

COMMANDER METALS & CERAMICS INFO CTR
US ARMY HARRY DIAMOND LAB BATTELLE COLUMBUS LAB
ATTN: TECH LIB 1 505 KING AVENUE
2800 POWDER MILL ROAD COLUMBUS, OH 43201
ADELPHIA, MD 20783

COMMANDER
NAVAL SURFACE WEAPONS CTR
ATTN: TECHNICAL LIBRARY

CODE X212
DAHLGREN, VA 22448

4.

NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH AND DEVELOPMENT CENTER,

US ARMY AMCCOM, ATTN: BENET WEAPONS LABORATORY, SMCAR-LCB-TL,
WATERVLIET, NY 12189, OF ANY ADDRESS CHANGES.
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